Гутова Саида Руслановна

ЭФФЕКТИВНОСТЬ КОМБИНИРОВАННОЙ ФАРМАКОТЕРАПИИ У ПАЦИЕНТОВ С АРТЕРИАЛЬНОЙ ГИПЕРТОНИЕЙ В СОЧЕТАНИИ С ПРЕДИАБЕТОМ

3.1.20. Кардиология (медицинские науки)

Автореферат диссертации на соискание ученой степени кандидата медицинских наук Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Кубанский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО КубГМУ Минздрава России)

Научный руководитель

доктор медицинских наук, профессор

Скибицкий Виталий Викентьевич

Официальные оппоненты:

- 1. **Небиеридзе Давид Васильевич -** доктор медицинских наук, профессор, федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр терапии и профилактической медицины» Министерства здравоохранения Российской Федерации, отдел профилактики метаболических нарушений, руководитель отдела
- 2. **Чесникова Анна Ивановна -** доктор медицинских наук, профессор, федеральное государственное бюджетное образовательное учреждение высшего образования «Ростовский государственный медицинский университет» Министерства здравоохранения Российской Федерации, кафедра внутренних болезней №1, профессор кафедры

Ведущая организация федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО ВолгГМУ Минздрава России)

Защита состоится « 07 » декабря 2021 года в 10^{00} часов на заседании диссертационного совета 21.2.016.01, созданного на базе федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации (ФГБОУ ВО МГМСУ имени А.И. Евдокимова Минздрава России) по адресу: 127473, г. Москва, ул. Делегатская, д. 20, стр. 1.

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВО МГМСУ имени А.И. Евдокимова Минздрава России (127206, г. Москва, ул. Вучетича, д. 10а) и на сайте http://dissov.msmsu.ru/

Авто	рефе	ерат	разослан	<<	>>	202	lг	
						 -		

Ученый секретарь диссертационного совета

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В России и в других странах артериальная гипертония (АГ) сохраняет лидирующую позицию среди заболеваний сердечно-сосудистой системы, что во многом определяет высокую частоту развития инсульта, инфаркта миокарда, хронической сердечной и почечной недостаточности [С.А.Бойцов и соавт., 2014; И.Е.Чазова и соавт., 2014; А.М.Ерина и соавт., 2019; Г.П.Арутюнов и соавт., 2020; G.Mancia et al., 2018]. При этом, несмотря на внедрение в клиническую практику современных антигипертензивных препаратов, достижение целевого уровня (ЦУ) артериального давления (АД) в Российской Федерации составляет 23-27,7% [С.А.Бойцов и соавт., 2014; Ю.В.Бадин и соавт., 2018; Д.А.Напалков и соавт., 2019].

Одной из возможных причин неудовлетворительного контроля АГ и высокой частоты развития сердечно-сосудистых осложнений является нередкое ее сочетание с различными коморбидными состояниями, в частности, с нарушениями углеводного обмена (НУО) - сахарным диабетом (СД) 2 типа, предиабетом [И.Е.Чазова и соавт., 2014; А.И.Чесникова и соавт., 2016; Д.В.Небиеридзе и соавт., 2018; F. Cossentino et al., 2020]. Распространенность сочетания АГ с СД 2 типа достигает среди населения 40,6% (в некоторых регионах России – 88,7%), с предиабетом - до 20-50% [М.Н.Мамедов и соавт., 2016; И.И.Дедов и соавт, 2017; Е.В.Шляхто и соавт., 2018; Р.Г.Оганов и соавт., 2019]. Доказано, что при СД 2 типа у больных АГ риск кардио-васкулярных осложнений увеличивается в 3-4 раза, а при предиабете в 2-3 раза [Г.П.Арутюнов и соавт., 2019; М.Qiu et al., 2015]. Установлено, что у пациентов с АГ и СД 2 типа выявляются более выраженные поражения органов-мишеней, чувствительными предикторами которых являются изменения показателей суточного профиля (СП) АД, артериальной жесткости, центрального аортального давления (ЦАД), структурно-функционального состояния миокарда (СФСМ) левого желудочка (ЛЖ), толщины комплекса интима-медиа (ТКИМ) общих сонных артерий (ОСА) по сравнению с пациентами с АГ без НУО. Это в значительной степени определяет высокий риск сердечно-сосудистых осложнений и создает трудности для обеспечения эффективного лечения у данной категории больных ГЮ.А.Васюк и соавт., 2016; Л.А.Панченкова и соавт., 2016; М.Е.Стаценко и соавт., 2017, 2019; Г.П.Арутюнов и соавт., 2019; С.В.Недогода и соавт., 2021; М.Gorostidi et al., 2011]. В то же время не до конца изучено, влияет ли наличие предиабета у пациентов с АГ на степень изменения СПАД, ригидности сосудистой стенки, ЦАД, СФСМЛЖ, ТКИМ ОСА, индексы резистентности (IR) почечных артерий (ПА), и насколько эти нарушения сопоставимы с поражениями, характерными для больных АГ в сочетании с СД 2 типа. Кроме того, недостаточно исследована эффективность влияния различных комбинаций антигипертензивных препаратов на показатели СПАД, артериальной ригидности, ЦАД, СФСМЛЖ, ТКИМ ОСА и IR ПА и возможность снижения развития кардио-васкулярных событий у пациентов с АГ и предиабетом.

К 2040 году IDF прогнозирует увеличение числа лиц с СД 2 типа в мире до 642 млн., а с предиабетом, в частности, с нарушенной толерантностью к глюкозе (НТГ) - до 482 млн. человек [International Diabetes Federation, 2015]. Вместе с тем состояние предиабета в четверти случаях может трансформироваться как в СД 2 типа, так и вернуться к

нормальным значениям уровня глюкозы [Е.Leiva et al., 2014]. Одной из групп препаратов, обладающих доказанным эффектом в отношении профилактики развития СД 2 типа, являются бигуаниды, а именно, метформин [И.Е.Чазова и соавт., 2020]. В исследовании DPP применение метформина ассоциировалось с уменьшением частоты манифестации СД в 31% случаях с сохранением длительного эффекта у 83% пациентов [W.C.Knowler et al., 2002]. По результатам продленного исследования DPP (DPPOS), через 10 лет наблюдения у больных сохранялся эффект снижения перехода в СД 2 типа на 56% [L.Perreault et al., 2012]. Кроме того, в ряде исследований у метформина выявлены не только антигипергликемические эффекты, но и дополнительные плейотропные свойства, такие как антиатерогенный, кардиопротективный, антигипертензивный и другие [А.М.Мкртумян, 2018; С.Х.Zhang et al., 2011; B.Viollet et al., 2012; L.Zhou et al., 2017].

В связи с этим вполне оправданным является назначение больным $A\Gamma$ и предиабетом комбинированной фармакотерапии, включающей не только антигипертензивные препараты с положительными метаболическими эффектами, но и лекарственные средства с доказанным превентивным действием в отношении развития СД 2 типа, а именно, метформина.

Другим препаратом с установленным позитивным влиянием на углеводный обмен является агонист I₁-имидазолиновых рецепторов (АИР) — моксонидин, оказывающий достаточно выраженное антигипертензивное действие и уменьшающий инсулинорезистентность (ИР) [Ж.Д.Кобалава, С.В.Недогода, А.И.Чесникова и соавт., 2018; I.Chazova et al., 2013].

Вместе с тем эффективность влияния моксонидина и метформина в составе комбинированной антигипертензивной терапии на показатели СПАД, артериальной ригидности, ЦАД, СФСМЛЖ, ТКИМ ОСА и IR ПА исследована недостаточно.

Возможно, восполнение недостающих знаний по данной проблеме позволит улучшить контроль $A\Gamma$ у пациентов с предиабетом и определить для них наиболее оптимальный вариант комбинированной фармакотерапии, обеспечивающий выраженные антигипертензивные, кардио-, вазо-, нефропротективные и антигипергликемические эффекты.

Степень разработанности темы

Распространенность АГ и предиабета неуклонно растет с каждым годом. При этом в литературе имеются лишь единичные сведения о показателях СПАД, ригидности артериальной стенки и ЦАД у больных АГ с ранними НУО, в том числе в сравнении только с АГ или СД [Ю.В.Жернакова и соавт., 2012; М.Е.Стаценко и соавт., 2017]. Кроме того, СФСМЛЖ у пациентов с АГ и ранними НУО недостаточно исследовано.

Вместе с тем малоизученным остается вопрос: какая из комбинаций препаратов суммарно окажет наиболее выраженное антигипертензивное и органопротективное действие, а также позитивный гликемический эффект у лиц с АГ и предиабетом?

Цель работы: повышение эффективности комбинированной фармакотерапии артериальной гипертонии у пациентов с предиабетом.

Задачи исследования:

- 1. Провести сравнительный анализ показателей суточного мониторирования артериального давления, артериальной жесткости, центрального аортального давления, структурно-функционального состояния миокарда левого желудочка, толщины комплекса интима-медиа общих сонных артерий и индексов резистентности почечных артерий у пациентов с артериальной гипертонией без нарушений углеводного обмена, в сочетании с предиабетом и сахарным диабетом 2 типа.
- 2. Исследовать влияние комбинированной фармакотерапии, включающей ингибитор ангиотензинпревращающего фермента, тиазидоподобный диуретик и бигуанид на показатели суточного мониторирования артериального давления, артериальной жесткости, центрального аортального давления, структурно-функционального состояния миокарда левого желудочка, толщину комплекса интима-медиа общих сонных артерий и индексы резистентности почечных артерий у пациентов с артериальной гипертонией в сочетании с предиабетом.
- 3. Оценить влияние комбинированной фармакотерапии, включающей ингибитор ангиотензинпревращающего фермента, тиазидоподобный диуретик и агонист имидазолиновых рецепторов на показатели суточного мониторирования артериального давления, артериальной жесткости, центрального аортального давления, структурнофункционального состояния миокарда левого желудочка, толщину комплекса интимамедиа общих сонных артерий и индексы резистентности почечных артерий у пациентов с артериальной гипертонией в сочетании с предиабетом.
- 4. Изучить влияние комбинированной фармакотерапии, включающей ингибитор ангиотензинпревращающего фермента, агонист имидазолиновых рецепторов и бигуанид на показатели суточного мониторирования артериального давления, артериальной жесткости, центрального аортального давления, структурно-функционального состояния миокарда левого желудочка, толщину комплекса интима-медиа общих сонных артерий и индексы резистентности почечных артерий у пациентов с артериальной гипертонией в сочетании с предиабетом.
- 5. Оценить влияние комбинированной фармакотерапии, включающей ингибитор ангиотензинпревращающего фермента, тиазидоподобный диуретик и дигидропиридиновый антагонист кальция на показатели суточного профиля артериального давления, артериальной жесткости, центрального аортального давления, структурнофункционального состояния миокарда левого желудочка, толщину комплекса интимамедиа общих сонных артерий и индексы резистентности почечных артерий у пациентов с артериальной гипертонией в сочетании с предиабетом.
- 6. Провести анализ сравнительный влияния различных вариантов комбинированной фармакотерапии на показатели суточного мониторирования артериального давления, ригидности сосудистой стенки, центрального аортального давления, структурно-функционального состояния миокарда левого желудочка, толщину комплекса интима-медиа общих сонных артерий, индексы резистентности почечных артерий и гликемического профиля у больных артериальной гипертонией в сочетании с предиабетом.

7. Определить и предложить оптимальный вариант комбинированной фармакотерапии для пациентов с артериальной гипертонией в сочетании с предиабетом.

Научная новизна исследования. Впервые:

- 1. У больных артериальной гипертонией и предиабетом установлены патологические изменения показателей суточного мониторирования артериального давления, артериальной жесткости, центрального аортального давления, структурнофункционального состояния миокарда левого желудочка, толщины комплекса интимамедиа общих сонных артерий и индексов резистентности почечных артерий более выраженные, чем у лиц с артериальной гипертонией без нарушений углеводного обмена и сопоставимые с таковыми у больных с сахарным диабетом 2 типа.
- 2. Определены особенности и эффективность влияния различных вариантов комбинированной фармакотерапии на показатели суточного мониторирования артериального давления, ригидности сосудистой стенки, центрального аортального давления, структурно функционального состояния миокарда левого желудочка, толщину комплекса интима-медиа общих сонных артерий и индексы резистентности почечных артерий у больных артериальной гипертонией в сочетании с предиабетом.
- 3. Выявлено более выраженное улучшение основных показателей суточного мониторирования артериального давления, ригидности сосудистой стенки и центрального аортального давления при применении комбинированной терапии, включавшей ингибитор ангиотензинпревращающего фермента, агонист имидазолиновых рецепторов и бигуанид, чем при использовании сочетания ингибитора ангиотензинпревращающего фермента, тиазидоподобного диуретика с агонистом имидазолиновых рецепторов или бигуанида, а также показан сопоставимый антигипертензивный и вазопротективный эффекты при сравнении с комбинацией ингибитора ангиотензинпревращающего фермента, тиазидоподобного диуретика и антагониста кальция у пациентов с артериальной гипертонией и предиабетом.
- 4. Установлена сопоставимость характера и степени положительной динамики показателей суточного профиля артериального давления, ригидности сосудистой стенки и центрального аортального давления при использовании комбинаций, включавших ингибитор ангиотензинпревращающего фермента, тиазидоподобный диуретик и агонист имидазолиновых рецепторов или бигуанид.
- 5. Выявлено статистически более значимое улучшение параметров структурнофункционального состояния миокарда левого желудочка применении при комбинированной терапии, включавшей ингибитор ангиотензинпревращающего фермента, тиазидоподобный диуретик и антагонист кальция по сравнению с использованием ингибитора ангиотензинпревращающего фермента, тиазидоподобного диуретика и бигуанида/агониста имидазолиновых рецепторов у пациентов с артериальной гипертонией И предиабетом. Выявлена сопоставимость выраженности антиремоделирующего действия комбинаций ингибитора ангиотензинпревращающего фермента, тиазидоподобного диуретика с агонистом имидазолиновых рецепторов или ангиотензинпревращающего бигуанидом ингибитора фермента имидазолиновых рецепторов и бигуанидом.

6. Установлено более выраженное улучшение гликемических показателей при использовании комбинированной терапии, включавшей ингибитор ангиотензинпревращающего фермента, агонист имидазолиновых рецепторов и бигуанид по сравнению с комбинацией ингибитора ангиотензинпревращающего фермента, тиазидоподобного диуретика и антагониста кальция у пациентов с артериальной гипертонией и предиабетом. Показаны преимущества сочетанного использования ингибитора ангиотензинпревращающего фермента, агониста имидазолиновых рецепторов и бигуанида перед комбинациями, включавшими ингибитор ангиотензинпревращающего фермента, тиазидоподобный диуретик и бигуанид или агонист имидазолиновых рецепторов в отношении улучшения гликемических показателей у пациентов с артериальной гипертонией и предиабетом.

Теоретическая и практическая значимость исследования

Выявленные прогностически неблагоприятные изменения показателей суточного мониторирования артериального давления (СМАД), артериальной жесткости, ЦАД, СФСМЛЖ, ТКИМ ОСА и IR ПА у больных АГ и ранними НУО углубляют представления о предикторах развития кардиоваскулярных событий у пациентов с коморбидной патологией, а также являются основанием для активного выявления, своевременного обследования этой категории ЛИЦ И раннего назначения соответствующей комбинированной фармакотерапии. Применение комбинации периндоприла, моксонидина метформина продемонстрировало сопоставимые антигипертензивный, вазопротективный, высокий кардио-И нефропротективный, И более значимый положительный метаболический эффекты по сравнению с использованием сочетания периндоприла, индапамида и амлодипина, что позволяет рассматривать данную комбинацию более предпочтительной у пациентов с предиабетом. Таким образом, индивидуализированный подход при выборе комбинированной фармакотерапии у пациентов с АГ и ранними НУО дает возможность оптимизировать терапию, что в перспективе может способствовать снижению риска кардио- и цереброваскулярных осложнений.

Методология и методы исследования

Анализ проводился на основе комплексного обследования (изучение анамнеза, стандартные лабораторные методы исследования крови и мочи, в том числе гликированный гемоглобин (HbA1c) и инсулин крови, пероральный глюкозо-толерантный тест (ПГТТ), анализ на микроальбумин мочи, электрокардиограмма, эхокардиография с использованием тканевого допплера, СМАД с определением показателей артериальной жесткости и ЦАД, триплексное сканирование брахиоцефальных и почечных артерий).

Основные положения, выносимые на защиту:

- 1. У пациентов с АГ и предиабетом выявляются статистически более значимые патологические изменения показателей СМАД, артериальной ригидности, ЦАД, СФСМЛЖ, ТКИМ ОСА и IR ПА, чем у больных АГ без НУО, при том, что большинство из них были сопоставимы с таковыми у лиц с АГ и СД 2 типа.
- 2. Применение у больных АГ и предиабетом комбинированной фармакотерапии, включавшей ингибитор ангиотензинпревращающего фермента (иАПФ), АИР и бигуанид

способствует статистически более выраженному улучшению основных показателей СМАД, жесткости сосудистой стенки и ЦАД по сравнению с использованием комбинации иАПФ, тиазидоподобного диуретика (ТД) с бигуанидом или АИР и обеспечивает сопоставимые антигипертензивный и вазопротективный эффекты в сравнении с комбинацией иАПФ, ТД и антагониста кальция (АК).

- 3. Использование иАПФ, АИР и бигуанида у пациентов с АГ и предиабетом сопровождается значимым кардиопротективным эффектом, сопоставимым с таковым при применении иАПФ, ТД и бигуанида/АИР.
- 4. У пациентов с АГ и предиабетом использование иАПФ с АИР и бигуанидом обеспечивает более выраженное положительное влияние на углеводный обмен по сравнению с применением других изученных вариантов комбинированной фармакотерапии.

Степень достоверности и апробация результатов исследования

Степень достоверности определяется на основании весьма объемной выборки респондентов (220 больных АГ, в том числе 160 с предиабетом, 30 - c СД 2 типа и 30 без НУО), соответствия сделанных выводов поставленным цели и задачам, использования общепризнанных критериев статистического анализа.

Апробация диссертационной работы проведена на совместном заседании кафедры госпитальной терапии, кафедры факультетской терапии, кафедры поликлинической терапии с курсом ОВП (семейная медицина) ФПК и ППС и кафедры пропедевтики внутренних болезней ФГБОУ ВО «Кубанский государственный медицинский университет» Минздрава России, состоявшемся 06.05.2020 года, протокол №9.

Основные положения работы доложены и обсуждены на Российском национальном конгрессе кардиологов (г. Москва, 2018; г. Екатеринбург, 2019); Региональном конгрессе Российского кардиологического общества (г. Краснодар, 2020). Основные положения работы представлены на XII Всероссийском конгрессе «Артериальная гипертония 2016: итоги и перспективы» (г. Москва, 2016), XV съезде кардиологов Юга России (г. Ростов-на-Дону, 2016), Российском национальном конгрессе кардиологов (г. Екатеринбург, 2016), IV Евразийском конгрессе кардиологов (Армения, г. Ереван, 2016), XIII Всероссийском конгрессе «Артериальная гипертония» (г. Уфа, 2017), Российском национальном конгрессе кардиологов (г. Санкт-Петербург, 2017), V съезде терапевтов Южного федерального округа (г. Ростов-на-Дону, 2017), VII Международном форуме кардиологов и терапевтов (г. Москва, 2018), Российском национальном конгрессе кардиологов (г. Москва, 2018), VIII Международном форуме кардиологов и терапевтов (г. Москва, 2019), XV Всероссийском конгрессе «Артериальная гипертония 2019: профилактика и лечение» (г. Москва, 2019), Российском национальном конгрессе кардиологов (г. Екатеринбург, 2019), XVI Всероссийском конгрессе «Артериальная гипертония 2020» (г. Ярославль, 2020), IX Международном форуме кардиологов и терапевтов (г. Москва, 2020).

СОДЕРЖАНИЕ РАБОТЫ МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

В исследование были включены 224 больных АГ, у которых предшествующая антигипертензивная терапия оказалась малоэффективной. Исследование проводилось на

базе ГБУЗ РА «Майкопская городская клиническая больница». Всеми больными был подписан протокол о добровольном участие в исследовании, апробированный комитетом по этике МБУЗ городская больница №2 (КМЛДО) г. Краснодар (с 2014 г. переименована в ГБУЗ «Краевая клиническая больница №2» МЗКК).

Критериями включения в исследование являлись: АГ 1-2 степени; НУО - предиабет (нарушенная гликемия натощак (НГН) и НТГ); подписанное информированное согласие пациента на участие в исследовании.

Критериями невключения стали: инфаркт миокарда и/или реваскуляризация коронарных артерий в анамнезе, острый коронарный синдром, стенокардия напряжения; хроническая сердечная недостаточность II-IV функционального класса (по NYHA); СД 1 типа; острое нарушение мозгового кровообращения; сложные нарушения ритма и проводимости; выраженные нарушения функции печени и почек; кардиомиопатии, миокардиты; симптоматическая АГ; непереносимость иАПФ, ТД, АК, АИР и бигуанидов.

Дифференциальная диагностика первичной и вторичной АГ осуществлялась в соответствии с современными рекомендациями.

Исследование было проспективным, сравнительным, открытым, рандомизированным в параллельных группах.

На первом этапе исследования отобрано 224 пациента с АГ (мужчин 97, женщин 127), медиана возраста которых составила 59 лет (49-64 года). Четыре пациента не прошли все этапы исследования: по причине отказа (2 человека) и аллергическая реакция на периндоприл (2 больных). У 160 человек был выявлен предиабет, у 30 - СД 2 типа и 30 пациентов не имели НУО. Ранние НУО – предиабет, верифицировали с помощью ПГТТ [И.И.Дедов и соавт., 2013, 2019]. Диагностика предиабета и СД 2 типа у пациентов с выявленными НУО осуществлялась совместно с эндокринологом.

Вторым этапом исследования стало распределение 160 пациентов с АГ и предиабетом на 4 группы, различавшихся по варианту получаемой комбинированной фармакотерапии.

В соответствии с современными рекомендациями на первом этапе для лечения АГ пациентам с метаболическими нарушениями назначают блокаторы РААС (иАПФ, блокаторы рецепторов к АТ II) в комбинации с другими антигипертензивными средствами [В.С.Задионченко и соавт., 2017; Д.В.Небиеридзе и соавт., 2018; С.В.Недогода и соавт., 2019; Д.В.Небиеридзе, 2019; G.Mancia et al., 2013; В.Williams et al., 2018]. Учитывая наличие предиабета, при отсутствии противопоказаний, лицам с АГ по согласованию с эндокринологом был назначен метформин [И.И.Дедов и соавт., 2015].

Пациенты были рандомизированы методом «конвертов»:

группа 1 (n=40) — принимали иАПФ периндоприл (престариум A, Servier) в стартовой дозе 5 мг вечером, ТД индапамид (арифон ретард, Servier) в дозе 1,5 мг утром и бигуанид метформин (глюкофаж, Nycomed) в суточной дозе 1000 мг;

группа 2 (n=40) — принимали иАПФ периндоприл (престариум A, Servier) в стартовой дозе 5 мг вечером в сочетании с ТД индапамидом (арифон ретард, Servier) в дозе 1,5 мг и АИР моксонидином (физиотенз, Abbott Laboratories) в стартовой дозе 0,2 мг утром;

группа 3 (n=40) — принимали иАПФ периндоприл (престариум A, Servier) в стартовой дозе 5 мг в вечернее время, АИР моксонидин (физиотенз, Abbott Laboratories) в стартовой дозе 0,2 мг утром и бигуанид метформин (глюкофаж, Nycomed) в суточной дозе 1000 мг;

группа 4 (n=40) — принимали иАПФ периндоприл (престариум A, Servier) в стартовой дозе 5 мг вечером, ТД индапамид (арифон ретард, Servier) в дозе 1,5 мг и дигидропиридиновый АК амлодипин (нормодипин, Gedeon Richter) в стартовой дозе 5 мг утром.

До начала лечения группы больных статистически значимо не различались по антропометрическим, клиническим данным и показателям СМАД, артериальной ригидности, ЦАД, СФСМЛЖ, ТКИМ ОСА и IR ПА.

Оценка достижения ЦУ АД проводилась по результатам офисного измерения АД через 4, 8, 12 и 24 недели терапии. Через 4 недели пациентам, не достигшим уровня АД менее 140/90 мм рт. ст., дозу периндоприла увеличивали до 10 мг в сутки: в 1-й группе 28 лицам, во 2-й -25, в 3-й -26, в 4-й -21. Через 8 недель лицам, не достигшим ЦУ АД в группах, получавших АИР, доза моксонидина была увеличена до 0,4 мг в сутки в утреннее время: во 2-й – 17 пациентам, в 3-й – 19 больным. В остальных группах коррекция антигипертензивной терапии не проводилась. При отсутствии регистрации ЦУ АД через 3 месяца лечения, пациентам назначались максимальные дозы моксонидина и амлодипина. В частности, в 1-й группе дозы препаратов не менялись. Во 2-й и 3-й группах назначали моксонидин 0,4 мг утром и 0,2 мг вечером 10 и 12 больным соответственно. В 4-й группе 7 лицам доза амлодипина была увеличена до 10 мг в сутки в утренние часы. Если в течение последующих 4-6 недель после коррекции дозы антигипертензивных препаратов уровень офисного АД превышал 139/89 мм рт. ст., больным корректировали фармакотерапию, и они выбывали из исследования. У лиц, достигших ЦУ АД на фоне 6 месяцев комбинированной терапии, проводился сравнительный анализ антигипертензивной и кардио-вазопротективной эффективности лечения.

Всем больным исходно и через 24 недели после лечения (у пациентов с предиабетом) проводилось комплексное клиническое и инструментальное обследование, в том числе с определением основных показателей СМАД, артериальной ригидности, ЦАД, СФСМЛЖ, ТКИМ ОСА и ІК ПА.

СМАД осуществлялось с помощью аппаратного комплекса BPLab Vasotens (ООО «Петр Телегин», Россия) в условиях свободного двигательного режима с интервалами измерений 25 минут в дневные часы и 55 минут во время сна [Е.О'Вгіеп et al., 2013]. Оценивались среднесуточные, дневные и ночные показатели систолического АД (САД), диастолического АД (ДАД) и пульсового АД (ПАД), индекс времени (ИВ) АД, вариабельность (Вар) АД, величина утреннего подъема (ВУП) АД, скорость утреннего подъема (СУП) АД и суточный индекс. Кроме того, оценивались среднесуточные значения показателей, характеризующих жесткость сосудистой стенки: скорость распространения пульсовой волны в аорте (PWV_{ао}); время распространения отраженной волны (RWTT); индекс ригидности артерий (ASI); параметры PWV_{ао}, RWTT, ASI, приведенные к САД 100 мм рт.ст. и ЧСС 60 уд/мин (PWV_{ао}пр, RWTTпр, ASIпр); индекс аугментации (AIx); AIx,

приведенный к ЧСС 75 уд/мин (AIхпр); максимальная скорость нарастания АД (dP/dt), а также определялись среднесуточные, дневные и ночные показатели основных параметров ЦАД: систолическое аортальное давление (САД $_{ao}$); диастолическое аортальное давление (ДАД $_{ao}$); среднее давление в аорте (АД $_{ao}$ ср); пульсовое АД в аорте (ПАД $_{ao}$); индекс аугментации в аорте (AIх $_{ao}$); АІх $_{ao}$, приведенное к ЧСС 75 уд/мин (AIх $_{ao}$ пр); амплификация пульсового давления (PPA); длительность периода изгнания (ED); индекс субэндокардиального кровотока (SEVR).

Эхокардиографическое исследование проводили на ультразвуковом аппарате «SIEMENS ACUSON X 300» (Корея) [Т.Н.Маrwick et al., 2015]. Анализировались параметры: фракция выброса (ФВ) ЛЖ, конечно-диастолический размер (КДР) ЛЖ, толщина (Т) межжелудочковой перегородки (МЖП), толщина задней стенки (ТЗС) ЛЖ, конечно-систолический размер (КСР) ЛЖ, масса миокарда ЛЖ (ММЛЖ) и индекс ММЛЖ (ИММЛЖ). Учитывая ИММЛЖ и относительную толщину стенок ЛЖ в зависимости от пола выделяли концентрическую гипертрофию (КГ), эксцентрическую гипертрофию и концентрическое ремоделирование ЛЖ [G.Mancia et al., 2013]. Для оценки диастолической функции ЛЖ определяли максимальную скорость потока раннего (Е) и позднего (А) наполнения по трансмитральному кровотоку, соотношение Е/А, время замедления раннего диастолического наполнения ЛЖ (DT), время изоволюметрического расслабления (IVRT) ЛЖ, глобальный индекс производительности миокарда ЛЖ (Теі-индекс). Кроме того, определяли пиковые скорости систолического(s') и диастолического движения фиброзного кольца (е' и а'), величину Е/е' и региональный индекс производительности миокарда ЛЖ (Теіт-индекс) в области МЖП и боковой стенки. Выделяли следующие типы диастолической дисфункции ЛЖ: замедления расслабления, псевдонормальный и рестриктивный.

Триплексное сканирование брахиоцефальных и почечных артерий проводили на ультразвуковом аппарате «SIEMENS ACUSON X 300» (Корея). Определяли ТКИМ ОСА и IR в устье ПА, сегментарных и междолевых ветвях с обеих сторон [В.Г.Лелюк и соавт., 2003].

Тощаковую глюкозу крови и через 2 часа после ПГТТ, а также гликированный гемоглобин определяли анализатором SUPER GL Easy Plus (Dr. Muller, Германия). Концентрацию инсулина крови натощак исследовали с помощью лабораторного набора Insulin ELISA EIA-2935 (DRG Instruments GmbH, Германия) с расчетом индексов инсулинорезистентности HOMA-IR и Caro [Г.Е.Ройтберг, 2007].

Результаты исследования обрабатывались с использованием программного обеспечения Statistica 12.0 (StatSoft Inc, США). Количественные признаки представлены медианами и интерквартильными интервалами. Межгрупповое сравнение по количественным показателям осуществлялось с использованием непараметрических U-критерия Манна–Уитни (для независимых групп) и критерия Вилкоксона (для зависимых групп). Множественные сопоставления по качественным показателям проводились по критерию χ^2 в модификации Пирсона. Отличия считались статистически значимыми при значениях p<0,05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Сравнительный анализ показателей СПАД, жесткости сосудистой стенки, ЦАД, СФСМЛЖ, ТКИМ ОСА и IR ПА у пациентов с АГ и НУО

Несмотря на большую длительность течения АГ у больных с СД 2 типа по сравнению с лицами с ранними НУО, выявленные изменения оказались сопоставимы. Вместе с тем сравнительный анализ показал, что при практически одинаковых возрасте больных и длительности течения АГ у пациентов с предиабетом выявлялись более выраженные патологические изменения, чем у лиц без НУО. Так, среднесуточные, дневные и ночные показатели САД и ПАД, а также ДАД преимущественно ночью, оказались выше у пациентов с НУО (p<0,05) (таблица 1). При предиабете отмечалась и более выраженная (p<0,05) «нагрузка давлением», в основном в ночные часы, свидетельствовавшая об увеличении риска развития сердечно-сосудистых осложнений. Кроме того, СУП САД повышалась в большей степени в группе больных АГ и предиабетом, чем у лиц с «изолированной» АГ.

Изменения Вар и ВУП АД в сравниваемых группах не различались. Возможно, это связано с тем, что у больных с НУО выявлялось стойкое повышение дневного и ночного САД и ДАД в ночное время без адекватного их снижения ночью, что и проявилось отсутствием статистически значимого увеличения Вар САД и ДАД, ВУП САД и ДАД. Показатель СУП ДАД также не различался в сравниваемых группах, однако, более, чем у 70% пациентов в каждой группе превышал референсные значения.

При оценке СПАД частота встречаемости патологических его вариантов у пациентов с АГ и предиабетом была сопоставима с таковой у больных АГ в сочетании с СД 2 типа. В то же время при анализе степени ночного снижения АД оказалось, что у пациентов с АГ в сочетании с НУО в 2,5 раза чаще, чем у больных с «изолированной» АГ регистрировался патологический профиль «non-dipper» (p<0,05). Не было зафиксировано статистической разницы в частоте регистрации патологического типа «night-peaker» между группами больных АГ с НУО. Однако у лиц с АГ и СД 2 типа данный вариант выявлялся чаще, чем у пациентов с «изолированной» АГ (p<0,05). Следует отметить, что у больных АГ с предиабетом или СД 2 типа нормальный суточный профиль фиксировался соответственно в 2 и 2,9 раз реже, чем в группе пациентов без НУО (p<0,05).

При сравнении параметров жесткости сосудистой стенки и ЦАД выявлено, что у больных АГ в сочетании с НУО основные показатели оказались сопоставимы, но статистически значимо выше таковых у пациентов с «изолированной» АГ (см. таблицу 1).

Установлено, что толщина стенок ЛЖ, ММЛЖ и ИММЛЖ у больных СД 2 типа и предиабетом оказались сопоставимыми, но были статистически значимо больше, чем у пациентов с «изолированной» АГ. У пациентов сравниваемых групп, ФВ была выше нормальных значений. Однако у больных АГ без НУО она оказалась больше, чем у пациентов с предиабетом и СД 2 типа (p<0,05). В нашем исследовании оценивались $s'_{MЖП}$ и $s'_{60\kappa}$, характеризующие сокращение эндо- и эпикардиальных слоев миокарда, при сравнении оказавшиеся меньше у больных АГ с ранними НУО, чем у лиц с «изолированной» АГ (p<0,05). Изменения, выявленные у больных с предиабетом существенно не отличались от показателей пациентов с СД 2 типа.

Таблица 1 Основные показатели СМАД, жесткости сосудистой стенки и ЦАД у пациентов с АГ без НУО, с предиабетом и СД 2 типа

	ΑΓ	АГ+предиабет	АГ+СД 2 типа
Показатель	(n=30)	(n=160)	(n=30)
CA II. AND DE OF	129,5 (125-135)	144 (140-150)*	146 (142-155)†
САЛ мирт ст	136 (132-141)	147 (141-155)*	150 (141-158)†
САЛ мм рт.ст.	` '	137 (132-145)*	144 (135-148)†
САД _н , мм рт.ст.	118,5 (112-126)		`
ДАД _н , мм рт.ст.	72,5 (67-79)	78,5 (74-84)*	83 (72-87)†
ПАД24, мм рт.ст.	50 (42-58)	55 (49-63)*	58 (51-72)†
ПАДд, мм рт.ст.	51 (48-60)	58 (52-66)*	59 (51-73)†
ПАД _н , мм рт.ст.	47,5 (45-53)	54 (48-63)*	56 (48-71)†
ИВ САДд, %	46,5 (22-58)	72,5 (43-90)*	79 (61-91)†
ИВ САДн, %	28 (15-52)	86 (57-100)*	95 (82-100)†
ИВ ДАД _н , %	42 (16-77)	84,5 (53-99)*	88 (39-100)†
СУП САД, мм рт.ст./ч	15 (8-29)	19 (14-28)*	16 (11-43)
RWTT, MC	131 (126,5-134)	125 (120-129)*	121 (110-126,5)†
RWТТпр, мс	140,5 (136-145)	135 (132-135)*	130,5 (128,5-136)†
PWV _{ao} , M/c	9,85 (9,25-10,55)	10,8 (10,2-11,1)*	10,8 (10,2-11,4)†
PWV _{ao} пр, м/с	8,9 (8,5-9,5)	9,8 (9,3-10,2)*	10,3 (9,9-11)†
ASI, мм рт.ст.	142 (126-166,5)	178,5 (159-206)*	187 (152-224)†
АSІпр, мм рт.ст.	115 (102,5-136,5)	143,5 (125-174)*	154,5 (135-209)†
AIx, %	-23,5 (-32,5- (-0,5))	-4 (-14-7)*	1 (-22-8)†
АІхпр, %	-24,5 (-34,5-(-3))	-6 (-15-5)*	0 (-16-6)†
САДао24, мм рт.ст.	121 (117-125)	132 (123-138)*	134 (128,5-139)†
САДаод, мм рт.ст.	122,5 (120,5-127,5)	133 (126-141)*	136 (132-140)†
САДаон, мм рт.ст.	108,5 (103,5-117)	125 (118-132)*	132 (123-137)†
ДАДаон, мм рт.ст.	73 (66-79)	79 (71-84)*	83,5 (75-88)†
ПАДао24, мм рт.ст.	36,5 (30,5-41)	42 (38-50)*	44 (38,5-54)†
ПАДаод, мм рт.ст.	35 (30-41)	42 (38-51)*	44 (37,5-53,5)†
ПАДаон, мм рт.ст.	41 (30-44,5)	44 (39-54)*	44,5 (41,5-59,5)†
AIx _{ao24} , %	22 (12,5-29)	29 (20-36)*	32,5 (18,5-38)†
AIx _{ao24} πp,%	21 (12,5-26,5)	27 (18-34)*	30,5 (19,5-37)†
AIx _{аод} , %	20,5 (10,5-29)	29 (20-35)*	30,5 (18,5-37,5)†
АІхаодпр,%	18 (7-25,5)	24 (16-31)*	30,5 (18,5-36)†
AIx _{aoh} , %	30 (21,5-36,5)	35 (27-41)*	38,5 (26-45)†
$AIx_{aoH}\pi p$,%	28 (20-33,5)	31 (25-38)*	34,5 (24,5-41)†
Пата сатазура	_= (== ==;=)		, , , , , , , , , , , , , , , , , , , ,

Примечание: * - p<0,05 при сравнении групп пациентов с АГ без НУО и с предиабетом; † - p<0,05 при сравнении групп пациентов с АГ без НУО и с СД 2 типа.

Показатели диастолической функции ЛЖ у пациентов с АГ и предиабетом были сопоставимы с таковыми у больных с СД 2 типа и характеризовались более выраженными патологическими изменениями, чем у лиц с АГ без НУО (p<0,05). Кроме того, у больных АГ в сочетании с предиабетом или СД 2 типа, диастолическая дисфункция ЛЖ с нарушением расслабления регистрировалась чаще, чем у больных с «изолированной» АГ и выявлялась в 100 % случаях (p<0,05). Индекс E/e, который также характеризует диастолическую функцию и коррелирует с уровнем давления заклинивания ЛЖ, оказался

сопоставимым у больных АГ с предиабетом и СД 2 типа, но был выше, чем у пациентов с АГ без НУО (p<0,05). Кроме того, у 31% больных АГ и предиабетом регистрировался коэффициент $8 < E/e^2 < 15$, что указывает на повышение давления заклинивания ЛЖ и жесткости миокарда.

При этом данные изменения сопровождались более частой регистрацией патологических типов ремоделирования ЛЖ при коморбидной патологии. Так, КГЛЖ у больных АГ с предиабетом и СД 2 типа выявлялась статистически значимо чаще, чем у пациентов без НУО и составила 87,5%, 93,9% и 26,7% соответственно. Следует заметить, что у больных с НУО нормальная геометрия ЛЖ не зарегистрирована.

У пациентов с АГ и предиабетом ТКИМ ОСА оказалась статистически значимо меньше, чем у больных АГ с СД 2 типа, но больше чем при АГ без НУО (p<0,05). Однако количество обследованных с ТКИМ>0,9 мм в группе больных АГ с предиабетом было сопоставимо с числом лиц в группе с СД 2 типа и составило 82,5%. При оценке почечного сосудистого сопротивления у пациентов с АГ и НУО показатели IR ПА оказались выше, чем у больных с «изолированной» АГ (p<0,05). Вместе с тем было выявлено, что у лиц с АГ и СД 2 типа только параметры IR в устьях ПА с обеих сторон оказались статистически значимо выше, чем у больных АГ с предиабетом. Значения IR в сегментарных и междолевых ветвях при сравнении не имели значимой разницы (p>0,05).

Таким образом, полученные нами данные свидетельствуют о более выраженных изменениях СПАД, показателей жесткости сосудистой стенки, ЦАД, СФСМЛЖ, ТКИМ ОСА и IR ПА у больных АГ в сочетании с предиабетом, чем у пациентов с «изолированной» АГ. Кроме того, величины большинства вышеуказанных параметров у пациентов с предиабетом оказались сопоставимы с таковыми у больных СД 2 типа.

Сравнительная антигипертензивная и вазопротективная эффективность влияния различных вариантов комбинированной фармакотерапии у пациентов с АГ и предиабетом

Через 6 месяцев терапии ЦУ АД был достигнут у сопоставимого количества больных: в 1 и 3 группах - у 36 из 40 лиц, во 2 и 4 – у 37 из 40 пациентов (р<0,05). Однако, по данным СМАД (таблица 2), применение у пациентов с АГ и предиабетом периндоприла в сочетании с метформином и моксонидином (группа 3), приводило к статистически более значимому улучшению большинства параметров по сравнению с комбинацией периндоприла, индапамида с моксонидином (группа 2) или с метформином (группа 1), а также обеспечивало сопоставимый антигипертензивный эффект с трехкомпонентной терапией, включавшей периндоприл, индапамид и амлодипин (группа 4).

Следует отметить, что у пациентов с $A\Gamma$ и предиабетом, эффект от применения комбинации периндоприла, индапамида с моксонидином или метформином оказался сопоставимым (p<0,05) (см. таблицу 2).

Через 24 недели терапии статистически значимое увеличение количества больных с адекватным снижением АД в ночные часы наблюдалось в группах 1, 3 и 4.

Кроме того, отмечалось уменьшение частоты регистрации суточного ритма «non-dipper» в 3 и 4 группах (p<0,05). Следует отметить, что число обследуемых с профилем «non-dipper» снижалось в 3 и 4,7 раза в 3 и 4 группах, тогда как в 1 и 2 группах - в 2,2 и 1,4

Таблица 2 Сравнительная эффективность влияния различных вариантов комбинированной фармакотерапии на СПАД у пациентов с АГ и предиабетом

Потмостоли	Группа 1 (п=3	36)	Группа2(n=	37)	Группа3 (n=	36)	Группа4(п=	37)
Показатель	Долечения	$\Delta_{ m l}\%$	Долечения	Δ2%	Долечения	$\Delta_3\%$	Долечения	Δ4%
	Через 24 недели	Δ]/0	Через 24 недели	Δ <u>0</u> /0	Через 24 недели	Δ3/0	Через 24 недели	Δ4/0
CATI ARKING	143,5 (139,5-147,5)	-11,7#&	142 (139-148)	-12,9 ⁸ y	145 (141-151)	-16,4 ^{#δ}	146(141-151)	-16,6 ^{&y}
САД ₄ ,ммрт.ст.	127(123-131,5)*	-11,/	124(122-128)*	-12,9 °	123 (119-125,5)*	-10,4	123 (120-126)*	-10,0 *
САП засител	145 (142-154)	-7,3#&	145 (141-155)	7.6v	146,5 (143-153)	-11,7#8	152 (143-156)	-12,2 ^{&} _{\gamma}
САД, мм рт.ст.	135 (132,5-137)*	-/,5***	134(132-135)*	-7,6 ⁸	132 (128-134)*	-11,/**	131 (130-134)*	-12,28
САП закотот	138(130-146,5)	-12,2#&	134(129-140)	-11,3 ⁸ y	138 (135-143)	-16,0**8	137 (132-147)	-17,3 ^{&} _Y
САД _н "ммрт.ст.	121 (118-124,5)*	-12,2	117(114-122)*	-11,5 °	116,5 (115-120)*	-10,0	114(109-118)*	-1/,5 °
ПАПа, уветот	80 (73-85,5)	-6,5**&	83 (78-91)	$\frac{91}{2000}$ $\frac{84(78-91)}{75.5(75.900)}$ $\frac{82(78)}{75.5(75.900)}$ $\frac{82(78)}{75.5(75.900)}$	82 (78-88)	-12,8 ^{&} _Y		
ДАД24, мм рт.ст.	74,5 (70-80)*	-0,5	78 (75-80)*	-0,0 '	75,5 (75-80)*	-10,/	72 (68-77)*	-12,0°
ПАП мижест	83 (77,5-91,5)	-4,7#&	87 (79-93)	-3,3 ⁸ / _Y	89 (82-92)	-10,2 ^{#δ}	86 (80-96)	12 2&y
ДАД,, мм рт.ст.	81 (75-85)*	-1, /	81 (78-84)*	-3,3 *	79,5 (75-83)*	-10,4	78 (70-82)*	-12,2 ^{&} _Y
ПАП магата	78,5 (66-82)	-6,8#&	78 (74-83)	-5,3 ⁸ / _Y	78,5 (72-84,5)	-11,4 ^{#δ}	80 (74-84)	-14,6 ^{&y}
ДАДь, мм рт.ст.	70,5 (64-75)*	-0,0	74(70-77)*	-5,5 *	70(67,5-74,5)*	-11,4"	69 (63-73)*	-14,0
ПАП	63 (53-68)	-11,7#&	56 (48-63)	-10,9 ⁸ / _y	57(50,5-63,5)	-17,1 ^{#8}	52 (49-55)	-17,7 ^{&} _Y
ПАД ₂₄ , мм рт.ст.	52 (48-55)*	-11,/	48(45-51)*	-10,9 *	47 (44-48,5)*	-1/,1	43 (42-46)*	
ПАП миже	64(57,5-73)	-9,4 ^{#&}	61 (51-65)	-8,2 ⁸ {	56 (52-66)	-17,4 ^{#6} 53 (50-57) 45 (42-47)*	53 (50-57)	-17,5 ^{&} _Y
ПАД, мм рт.ст.	54,5 (53-58,5)*	-3,4	51 (48-56)*	-0,∠ °	48 (45,5-51)*		-17,5 °	
ПАД _н , мм рт.ст.	62 (52-67)	-11,4#&	50 (46-59)	-6,5 ⁸ / ₄	57,5 (49-63)	-16,9 ^{#8}	51 (47-56)	-17,9 ^{&} _Y
пидц, ммрт.ст.	52 (50-56)*	-11,4	45 (43-48)*	-0,5 *	46 (43-50)*	-10,9	42 (37-45)*	
ИВСАД, %	69,5 (54-82)	-37,7#&	53 (25-75)	-34,8 ⁸ y	76(54-93,5)	-59,1 ^{#8}	80(61-91)	-62,2 ^{&y}
ИВСАДь, 70	30,5 (23,5-55)*	-5/,/	27(15-46)*	-34,0 °	24(8-43)*	-39,1	23 (10-45)*	-02,Z °
ИВСАД _н ,%	89,5 (57,5-99)	-41,2 ^{#&}	65 (40-93)	-46,7 ⁸ y	84,5 (53-100)	-64,6 ^{#8}	84(67-100)	-68,0 ^{&y}
ИВСАДЬ, 70	44,5 (34,5-66)*	41,4	32(16-45)*	40 ,/ °	30,5 (24-38)*	-01, 0	29(13-53)*	-00,0 *
ИВДАД _н ,%	85 (48-97)	-22,3#&	84 (44-97)	-17,0 ⁸ y	85 (60-100)	-38,9 ^{#8}	80 (62-99)	-45,2 ^{&}
иодуць /0	54,5 (44-74)*	-22,3	53 (41-74)*	-17,0 *	46,5 (16-67,5)*	-30,9	41 (34-50)*	-4 5,2 °
ВарСАДд,	15 (13,5-19)	-17,3#&	14(13-18)	-20 ⁸ y	15,5 (12,5-17,5)	-30,4#8	16(13-19)	-35,3 ^{&} _Y
ммрт.ст.	13 (10,5-15,5)*	-1/,5	11 (10-15)*	-20 °	10(8-12,5)*	-30,4	10(8-12)*	-33,3 •
ВарСАД _н ,	14(11-16,5)	-22,1#&	12(9-15)	-23,1 ⁸ y	11 (10-17)	-35,6#8	14(11-17)	-40,0 ^{&} y
ммрт.ст.	10(10-12,5)*	-22,1	10(7-12)*	-23,1 °	8(6,5-10)*	-55,0	9(6-10)*	-40,0 *
ВарДАД _н ,	9(7,5-10)	-16,3#&	9(8-11)	-15,4 ⁸ y	9,5 (7-12)	-25,0 ^{#8}	10(7-14)	-28,6 ^{&y}
ммрт.ст.	8(7,5-10)	-10,5	8(7-10)*	-13,4 °	7,5 (6-9)*	-23,0	7(5-9)*	-20,0 °
ВУПСАД,	48,5 (41-58)	-9,4#&	42 (28-54)	-10 ⁸ y	44 (35-60,5)	-24,8 ^{#8}	51 (38-60)	-26,9 ^{&} _Y
ммрт.ст.	41,5 (38-49)*	-7,4	39 (35-45)	-10 ,	40 (29,5-48)*	-24,0	35 (25-40)*	-20,9 °
СУПСАД,	19,5 (12,5-32,5)	166	18(15-26)	122	19,5 (12-39)	200	21 (15-36)	20.6
мм рт.ст/ч	15(14-18)*	-16,6	15(13-18)*	-13,3	14,5 (10-20,5)*	-28,9	14(9-30)*	-30,6

Примечание: здесь и далее $\Delta\%$ - процент изменения показателей по сравнению с исходными значениями; * - p<0,05 при сравнении показателей с исходными данными; # — значимость различий между $\Delta_1\%$ и $\Delta_3\%$; & - значимость различий между $\Delta_1\%$ и $\Delta_4\%$; δ — значимость различий между $\Delta_2\%$ и $\Delta_3\%$; γ — значимость различий между $\Delta_2\%$ и $\Delta_4\%$; β - значимость различий между $\Delta_3\%$ и $\Delta_4\%$.

раза соответственно. Вместе с тем на фоне 24 недель лечения патологические типы «night-peaker» и «over-dipper» ни в одной из групп не регистрировались.

При оценке степени изменения основных показателей жесткости артериальной стенки и ЦАД через 24 недели применения различных вариантов фармакотерапии у пациентов с АГ и предиабетом было установлено, что большинство параметров имели статистически значимую положительную динамику (таблицы 3 и 4). Однако комбинация периндоприла, моксонидина и метформина (группа 3) приводила к более выраженному улучшению показателей по сравнению с таковыми в группах 1 и 2 и обеспечивала сопоставимый с трехкомпонентной терапией, включавшей периндоприл, индапамид и амлодипин (группа 4), вазопротективный эффект.

Таблица 3 Сравнительная эффективность влияния различных вариантов комбинированной фармакотерапии на жесткость сосудистой стенки у пациентов с АГ и предиабетом

фирминот	epammi ma m		и вобранет	011 010	пки у пациен	102 01	п предпас	010111
	Группа 1 (п=	36)	Группа2 (п=	37)	Группа3 (n=3	6)	Группа4(п=37)	
Показатель	Долечения	A 0/	Долечения	A 0/	Долечения	Δ3%	Долечения	A 0/
	Через 24 недели	$\Delta_{ m l}\%$	Через 24 недели	Δ_2 %	Через 24 недели	Δ370	Через 24 недели	$\Delta 4\%$
DWTT	125 (120-128,5)	4.9#&	127(124-131)	3,2 ⁸ / ₄	125,5 (119-129)	7,0**8	123 (120-128)	7,6 ^{&} _Y
RWTT, MC	129,5 (127-135)*	4,9	134 (131-138)*	3,2°	135 (130,5-142)*	7,0	134(129-141)*	7,0
DW/TT 150	136,5 (134,5-140)	2,9**&	138 (135-142)	2,1 ⁸ / ₂	137,5 (130-141,5)	4,7#8	134(132-140)	140) 4,7 ^{&} _Y
RWTTпр, мс	139,5 (137-145)*	2,9	142(141-145)*	2,1%	143 (140-150,5)*	4,/**	145(141-151)*	4,/24
DWW/-	10,6(10,2-11,1)	-1,8#&	10,5 (10-10,8)	-1,0 ⁸ / ₉	10,8 (10,3-11,2)	-6,0**	10,9(10,6-11,4)	-6,8 ^{&y}
PWV _{ao} , M/c	10,1 (9,6-11)*		10 (9,7-10,7)*		10 (9,7-10,6)*		10,1 (9,4-10,7)*	
DUAL === > s/s	9,6(9,3-10,1)	-2,1#&	9,5 (9-10)	-2,2 ⁸ y	10(9,7-10,3)	-6,1 ^{#8}	10(9,8-10,3)	-6,0 ^{&}
PWV _{ао} пр, м/с	9,3 (8,9-10)*		9(8,7-9,6)*		9,1 (9,0-9,6)*		9,3 (8,8-9,3)*	
ACI va com on	182,5 (166-204,5)	-10,6#&	160 (141-196)	-6,6 ⁸	175 (161-204,5)	-17,7 ^{#δ}	189 (166-215)	-21,7 ^{&} _{\(\gamma\)}
ASI, MM pt.ct.	159 (149-180)*	-10,0	151 (141-158)*	-0,0°	139(133-155,5)*	-1/,/**	148(131-168)*	-21,/~3
A CI-re a present on	145 (130-162,5)	-11,8#&	125 (115-160)	-7,9 ⁸ y	138 (125-166,5)	-18,7 ^{#8}	148(131-174)	-21,5 ^{&} _Y
ASIпр, мм рт.ст.	132(119,5-146)*	-11,8	117(102-133)*	-/,9%	107 (98-123)*		115(101-127)*	
Alx,%	4(-12-6,5)	11 2#8	-3(-8-8)	12.5%	-3,5(-15-7)	-32,5 ^{#8}	-5(-22-6)	-33,3 ^{&} ₄
	-17,5(-24-(-11))*	-11,3#&	-16(-25-1)*	-12,5 ⁸	-24,5 (-30,5-(-6))*		-37 (-51-(-23))*	
A I 0/	-6(-14,5-4)	00 E#8r	-5(-10-6)	-28,6 ⁸ y	-6(-17,5-5,5)	-45,2 ^{#8}	-9(-25-3)	-46,9 ^{&} _{\(\gamma\)}
АІхпр,%	-20(-27-(-13))*	-23,5#&	-17(-25-(-6))*		-24,5 (-32-(15))*		-39(-51-(-23))*	

Вместе с тем обе комбинации, включавшие периндоприл, индапамид и метформин или моксонидин оказывали сопоставимый положительный эффект на показатели ригидности сосудистой стенки и ЦАД у больных АГ в сочетании с предиабетом (см. таблицы 3 и 4).

Сравнительная эффективность влияния различных вариантов комбинированной фармакотерапии на показатели СФСМЛЖ, ТКИМ ОСА и IR ПА у пациентов с АГ и предиабетом

При сравнительной оценки динамики основных показателей СФСМЛЖ у пациентов с АГ и предиабетом на фоне применения четырех вариантов комбинированной терапии было установлено, что у больных АГ и предиабетом, получавших периндоприл в сочетании с индапамидом и амлодипином (группа 4), отмечалось статистически более значимое улучшение показателей по сравнению с использованием других изученных

комбинаций препаратов (таблица 5). Это касалось параметров ремоделирования и большинства показателей, характеризующих систолическую и диастолическую функции миокарда ЛЖ.

Таблица 4 Сравнительная эффективность влияния различных вариантов комбинированной фармакотерапии на ЦАД у пациентов с АГ и предиабетом

	Группа 1 (n=3	6)	Группа 2 (п	=37)	Группа3 (п=3	6)	Группа4(г	=37)
Показатель	Долечения		Долечения		Долечения		Долечения	Δ4%
1 IOKASAICII	H 24	$\Delta_{ m l}\%$	Через 24	Δ2%	H	$\Delta_3\%$	Через 24	
	Через 24 недели		недели		Через 24 недели		недели	
САП	130(126,5-133)	-11,2**	129(124-136)	-13,7 ⁸ _Y	133,5(128,5-137,5)	-17,9 ^{#δ}	134(126-141)	-18,2 ^{&} _Y
САД _{ю24} , мм рт.ст.	115(112-120)*	-11,2	112(110-115)*	-13,/ °	112(107,5-114)*	-17,9	111 (108-114)*	-10,Z °
САП закотот	132(130-141,5)	-8,0#&	133 (130-143)	-8,5 ⁸ / ₉	133,5 (130-140)	-11,9**	138(131-144)	-12,5 ^{&} _Y
САД _{од,} мм рт.ст.	122,5 (120,5-125)*	-0,0	123 (121-126)*	-0,2 °	120(116,5-121,5)*	-11,9	119(118-122)*	-12,5 °
САП закотот	127 (120-136,5)	-12,7**&	123 (117-129)	-11,2 ⁸ _Y	127 (124-131,5)	-16,2 ^{#8}	125 (121-135)	-17,4 ^{&}
САД _{аон,} мм рт.ст.	111 (107,5-115)*	-12,/	107(104-111)*	-11,∠ °	106,5 (105-111)*	-10,2	103 (100-108)*	-1/, 4 °
ПАП закотот	79,5 (67-83)	-6,3#&	79 (75-85)	$-4,1^{\delta_{Y}}$	79,5 (73-85,5)	11 2 #δ	81 (75-85)	1 <i>1</i> 5 &V
ДАД _{жн} , мм рт.ст.	72 (65,5-76)*	-0,5	75 (73-79)*	-4 ,1 °	71 (68,5-75,5)*	-11,3 ^{#8}	70(64-74)*	-14,5 ^{&y}
ATI was Martine	102,5 (95,5-108)	-8,2#&	103 (100-109)	-10,2 ⁸ √	105 (101-110)		-14,7 ^{&} ²	
АД _{ю24} ср, мм рт.ст.	91,5 (88,5-96,5)*	-0,2	93 (91-95)*	-10,2	92 (89,5-94)*		89 (87-92)*	-1 '1 ,/ °
АДадер, ммрт.ст.	106,5 (100-110)	-7,0#&	109(101-113)	-7,2 ⁸ ⁄ ₄	108 (104-112)	-9,9⁴8	108 (102-114)	-10,6 ^{&y}
<i>т</i> ұц _{алд} ер, мімгрт.ст.	99 (94-101,5)*		100(97-101)*		97 (95-98,5)*		95 (93-99)*	
АД _{ан} ср, ммрт.ст.	100 (90,5-105,5)	-10,2 ^{#&} 98 (93-102) 89 (86-91)*	98 (93-102)	-9,3 ⁸ / ₂	100 (94-106)	-13,4 ^{#δ}	99 (94-106)	-15,6 ^{&y}
<i>А</i> Д _{20Н} Ф, МИРГ.СТ.	88 (84,5-92)*		-y,J ·	86,5 (83,5-89)*	-1 <i>J</i> ,T	84(83,5-89)*	-13,0	
ПАД _{хо24,} мм рт.ст.	45,5 (40-50)	-15,0	38 (33-46)	-5,3 ^y	41 (37-44,5)	-11,7	46(40-55)	-20,0 ^y
	38 (33-42,5)*		35 (32-39)*		34,5 (33-43)*		37(32-44)*	
ПАДаат, ммрт.ст.	45,5 (40-49)	-8,9#&	38 (32-48)	-5,9 ⁸ / ₄	41 (40-46)	-17,1 ^{#δ}	44 (40-54)	-20,5 ^{&} ₄
	40,5 (35,5-44)*	-0,9	36(32-40)*		34(32-38)*		36(32-45)*	
ПАД _{жн} , мм рт.ст.	47,5 (43-53,5)	-16,1#&	39(33-48)	-12,1 ^δ γ	43,5 (39-49)	-24,6 ^{#δ}	48 (41-60)	-26,7 ^{&} _Y
	38,5 (34-45)*	-10,1	35 (28-40)*	-12,1	33 (29,5-36,5)*	-2-1,0	38(32-41)*	-20,7
Alx ₀₀₂₄ ,%	33 (25-37)	-22,4#&	29 (24-34)	-15,8 ⁸	30 (20,5-36)	-41,1 ^{#δ}	30(19-37)	-54,9 ^{&} {
AuAa024, 70	24,5 (15-29)*	-22,T	25 (20-32)*	-13,0	13,5 (6,5-21)*	71,1	15(4-22)*	-5-7,5
Alx _{а24} пр,%	28 (21-34)	-29,4#&	24(17-34)	-23,1 ^δ γ	26(16,5-31)	-50,7 ^{#δ}	27(15-33)	-56,1 ^{&y}
7 ti/ _{30/4} tip ₃ / 0	20 (9-24)*	-27,1	22 (15-27)*	-2.5,1	10,5 (2,5-17)*	-30,/~	12(3-18)*	
AIx _{20,1} ,%	31,5 (25,5-36)	-16,7#&	29 (22-33)	-12,9 ⁸	28,5 (18-34)	-43,0 ^{#8}	27(17-36)	-56,5 ^{&y}
Анладь / 0	24,5 (15-30)*	-10,7	25 (17-30)*	-12,7	11,5 (6-23)*	4 3,U	10(3-20)*	
Alx _{aor} rip,%	27,5 (21,5-31,5)	-23,5#&	22(18-30)	-22,2 ⁸ _Y	23 (14-29,5)	-48,9 ^{#8}	23 (13-32)	-55,6 ^{&y}
7 11/3()(LIP), / U	19(9-26,5)*	-23,3	18(11-24)*	- 22,4	10(3-17,5)*	70,7	8(1-18)*	-55,0
AIx_{ach} %	38 (32-41,5)	-20,5#&	33 (29-42)	-16,7 ⁸ √	31,5 (27,5-41)	-44,9 ^{#8}	38(31-44)	-48,9 ^{&} y
1 11/1(H) / U	26,5 (16,5-34)*	20,0	26(24-34)*	10,7	16,5 (11-26)*	1 6,7	21 (4-28)*	40,9
Alxarim %	34(27,5-37)	-29,9#&	29 (25-38)	-16,0 ⁸ / _y	27,5 (23-36,5)	-56,9#8	34(28-40)	-57,5 ^{&}
АІханпр,%	21,5 (12,5-29,5)*	-29,9°°	23 (20-31)*		11,5 (5,5-19)*	50,5	16(-1-26)*	-5/,5~

Кроме того, при сравнении эффекта терапии двух групп комбинированной терапии, включавших периндоприл, индапамид и метформин/моксонидин (группы 1 и 2), у пациентов с АГ и предиабетом были выявлены сопоставимые положительные изменения (см. таблицу 5). Однако следует отметить, что совместное использование периндоприла,

моксонидина и метформина (группа 3) обеспечивало аналогичные эффекты, полученные при применении комбинации периндоприла, индапамида и метформина/моксонидина (группы 1 и 2).

Таблица 5 Сравнительная эффективность влияния различных вариантов комбинированной фармакотерапии на показатели СФСМЛЖ у пациентов с АГ и предиабетом

	Группа1 (n=36)	Группа 2 (п=37	7)	Группа 3 (n=36	<u>()</u>	Группа4(п=3	7)
Показатель	До лечения	A 0/	До лечения	A 0/	До лечения	4.0/	До лечения	Δ4%
	Через 24 недели	$\Delta_{\rm l}\%$	Через 24 недели	Δ2%	Через 24 недели	Δ3%	Через 24 недели	Δ4%0
LCIID	5,12 (4,85-5,3)	-1,25 ^{&}	5,1 (4,8-5,2)	-1,2 ^y	5,11 (4,9-5,33)	-0,99 ^β	5,1 (4,79-5,3)	-1,9 ^{&} \bar{\beta}
КДР, см	4,99 (4,8-5,2)*	-1,23**	5,06 (4,7-5,15)*	-1,2°	5,08 (4,86-5,25)*	-0,99	Через 24 недели 5,1 (4,79-5,3) 5,0 (4,7-5,18)* 1,16 (1,1-1,23) 1,08 (0,99-1,16)* 1,24 (1,17-1,32) 1,18 (1,1-1,27)* 144,1 (119,2-163,7) 126,7 (105,2-146,4)* 8,3 (7,3-8,6) 8,9 (8,5-9,4)* 8,2 (7,5-9,8) 9,2 (8,5-10,2)* 0,75 (0,64-0,84) 0,96 (0,84-1,0)* 7,5 (6,7-8,1) 6,9 (6,2-7,3)* 7,1 (5,7-7,8) 6,4 (5,6-7,2)* 0,6 (0,51-0,67) 0,5 (0,47-0,52)* 0,68 (0,6-0,87) 0,55 (0,49-0,68)* 0,69 (0,59-0,76)	-1,9****
ТЗСЛЖ, см	1,13 (1,05-1,18)	-3,6&	1,1 (1,08-1,2)	-3,8 ^y	1,12 (1,08-1,18)	-3,4 ^β	1,16(1,1-1,23)	-6,2 ^{&yβ}
13CJA, CM	1,08 (1,0-1,13)*	-3,0	1,08 (1,03-1,13)*	-3,0°	1,08 (1,05-1,14)*	-3,4	1,08 (0,99-1,16)*	- 0,2 **
ТМЖП,	1,2 (1,14-1,25)	-3,9&	1,16(1,1-1,23)	-4,0 ^y	1,19 (1,13-1,26)	-3,6 ^β	1,24 (1,17-1,32)	-5,7 ^{&γβ}
СМ	1,16(1,09-1,2)*	-3,9	1,12(1,07-1,17)*	-1, 0°	1,14(1,08-1,2)*	-3,0	1,18(1,1-1,27)*	-5,7 **
ИММЛЖ,	142,4 (130,2-152)	-6,6 ^{&}	139,8 (125,4-160,7)	-6,8 ^y	136,3 (123,3-154,4)	-6,0 ^β	144,1 (119,2-163,7)	-10,5 ^{&γβ}
Γ/M ²	130,3 (116,5-142,4)*	-0,0	128,3 (113,4-146,9)*	-0,0°	129,4 (114,7-147,4)*	-0,0	126,7 (105,2-146,4)*	-10,5 "
s' _{мжіі} , см/с	8,2 (7,65-9,05)	6,9 ^{&}	8,2 (7,7-9,0)	6,8 ^y	7,8 (7,0-8,7)	6,96 ^β	8,3 (7,3-8,6)	10,0 ^{&γβ}
S _{MMI} , CM/C	9,1 (8,5-9,8)*	0,9	8,7 (8,3-9,5)*	0,0,	8,5 (8,0-8,9)*	0,90	8,9 (8,5-9,4)*	10,0 *
s'ook, cm/c	8,75 (7,75-9,7)	5,8 ^{&}	7,9 (7,6-9,0)	7,0 ^y	8,25 (7,6-8,95)	6,5 ^β	8,2 (7,5-9,8)	9,8 ^{&} γβ
S 60K, CIVI/C	9,3 (8,7-10)*	3,0	8,4 (8,2-9,2)*	7,0°	8,85 (8,1-9,6)*	0,5	9,2 (8,5-10,2)*	
E/A	0,76 (0,6-0,86)	19 , 5&	0,75 (0,69-0,79)	20,0 ^y	0,76 (0,69-0,84)	16,0 ^β	0,75 (0,64-0,84)	24,7 ^{&γβ}
ĽA	0,9 (0,76-1,0)*	19,3	0,86 (0,78-1,0)*	20,0°	0,89 (0,85-1,0)*	10,0	0,96 (0,84-1,0)*	2 4 ,/ **
Е/е'мжп	6,7 (6,1-7,8)	-4 ,7 ^{&}	6,9 (6,0-7,6)	-4,8 ^y	6,6 (5,6-7,8)	-5,3 ^β	7,5 (6,7-8,1)	-8,6 ^{&xyβ}
L/С _{МЖП}	6,6 (5,8-7,3)*	-1 ,/	6,1 (5,6-7,1)*	-1, 0°	6,4 (5,5-7,3)*	-5,5'	6,9 (6,2-7,3)*	-0,0 "
E/e' _{бок}	6,25 (5,6-7,2)	-3,5&	5,9 (5,0-6,9)	-3,4 ^y	6,6 (5,2-7,4)	-4,8 ^β	7,1 (5,7-7,8)	-8,1 ^{&γβ}
L/С бок	5,95 (5,3-6,7)*	-3,3	5,6 (5,0-6,5)*	-3,4°	5,8 (4,9-7,2)*	-1 ,0'	6,4 (5,6-7,2)*	-0,1 "
Теі-индекс	0,65 (0,52-0,74)	-12,3 ^{&}	0,58 (0,53-0,7)	-9,5 ^y	0,54 (0,49-0,58)	-12,8 ^β	0,6 (0,51-0,67)	-16,3 ^{&yβ}
тег-индекс	0,54 (0,47-0,6)*	-12,3	0,49 (0,47-0,59)*	-9,5°	0,46 (0,42-0,52)*	-12,0	0,5 (0,47-0,52)*	-10,5 **
Теіт-индекс	0,75 (0,62-0,83)	-14,1 ^{&}	0,63 (0,54-0,78)	-11,8 ^y	0,7 (0,58-0,8)	-14,8 ^β	0,68 (0,6-0,87)	-18,3 ^{&} γβ
МЖП	0,65 (0,53-0,72)*	-14,1	0,55 (0,46-0,62)*	-11,0°	0,57 (0,47-0,65)*	-14,0	0,55 (0,49-0,68)*	-10,5
Теіт-индекс	0,72 (0,63-0,9)	-12,4 ^{&}	0,72 (0,56-0,9)	11 5 v	0,63 (0,54-0,78)	12 4B	0,69 (0,59-0,76)	1 <i>5</i> O&vB
бок. стенки	0,62 (0,5-0,72)*	-1 <i>2</i> ,4°°	0,57 (0,5-0,77)*	-11,5 ^y	0,58 (0,48-0,65)*	-13,4 ^β	0,54 (0,48-0,61)*	-15,8 ^{&γβ}

Улучшение СФСМЛЖ на фоне 24 недель лечения сопровождалось у 16-24% больных нормализацией геометрии ЛЖ во всех группах (p<0,05). Вместе с тем статистически значимая разница в частоте регистрации больных с КГЛЖ до и через 24 недели лечения отмечалась только в 4 группе. Кроме того, на фоне терапии во всех группах пациентов с АГ и предиабетом наблюдалось увеличение числа больных с нормальной диастолической функцией ЛЖ (p<0,05).

Независимо от выбранного варианта терапии отмечался сопоставимый эффект улучшения значений IR ПА и уменьшения ТКИМ ОСА.

Сравнительная эффективность влияния различных вариантов комбинированной фармакотерапии на гликемический показатели у пациентов с АГ и предиабетом

Сравнительный анализ полученных результатов показал, что все варианты комбинированной фармакотерапии у пациентов с АГ и предиабетом приводили к положительным изменениям метаболических параметров. Однако глюкоза крови натощак снижалась статистически значимо больше в 1 и 3 группах, включавших метформин или его комбинацию с моксонидином в составе терапии, по сравнению с 4 группой. Глюкоза крови через 2 часа после ПГТТ и инсулин крови натощак уменьшались больше во 2 и 3 группах больных, принимавших моксонидин в сочетании с другими лекарственными препаратами по сравнению с 4 группой (р<0,05). Кроме того, гликированный гемоглобин снижался в большей степени в 1 и 3 группах, чем во 2 и 4 группах (р<0,05). Вместе с тем индекс НОМА-ІК уменьшался больше у пациентов 3 группы, чем у больных 4 группы (р<0,05).

Таким образом, наилучшие изменения гликемического профиля наблюдались у больных, получавших комбинацию периндоприла, моксонидина и метформина. Следует также подчеркнуть, что комбинированная фармакотерапия, включавшая иАПФ, АИР и бигуанид приводила у пациентов с АГ и предиабетом к статистически более значимой позитивной динамике основных показателей углеводного обмена, чем использование иАПФ, ТД и АК. В то же время положительное влияние комбинации периндоприла, индапамида и амлодипина на гликемические параметры оказалось менее выраженным по сравнению с комбинациями, включавшими метформин и/или моксонидин.

Проведение комплексной фармакотерапии у пациентов с АГ и предиабетом независимо от выбранного варианта комбинированных препаратов сопровождалось значимыми положительными антигипертензивным, кардио-, вазо- и нефропротективными эффектами. Однако комбинированная терапия, включавшая периндоприл, моксонидин и метформин, проявлялась более выраженными положительными изменениями основных показателей углеводного обмена по сравнению с применением других сочетаний препаратов. Более того, различия в полученных эффектах применения периндоприла в комбинациях с моксонидином и метформином, и с индапамидом и амлодипином, были статистически значимыми. Кроме того, выявленные на фоне лечения улучшения основных показателей СМАД, жесткости сосудистой стенки и ЦАД оказались сопоставимыми в обеих группах и статистически более значимыми, чем в группах, использовавших периндоприл в комбинации с индапамидом и метформином/моксонидином. Вместе с тем применение периндоприла в сочетании с моксонидином и метформином обеспечивало сопоставимый эффект в сравнении с использованием комбинаций периндоприла, индапамида с метформином/моксонидином, включавшими ТД в улучшении показателей ремоделирования миокарда ЛЖ.

Таким образом, полученные результаты продемонстрировали не только значимые изменения параметров СПАД, жесткости сосудистой стенки, ЦАД, СФСМЛЖ, ТКИМ ОСА и IR ПА у больных АГ в сочетании с предиабетом, но также позволили определить с учетом наличия ранних НУО наиболее оптимальный вариант комбинированной терапии, обеспечивающий выраженные антигипертензивный, кардио-, вазо- и нефропротективные

эффекты, а также позитивное влияние на метаболические показатели, что может быть использовано в реальной клинической практике.

выводы

- 1. У пациентов с артериальной гипертонией и предиабетом патологические изменения показателей суточного профиля артериального давления, артериальной ригидности, центрального аортального давления, структурно-функционального состояния миокарда левого желудочка, толщины комплекса интима-медиа общих сонных артерий и индексы резистентности почечных артерий статистически значимо более выражены, чем у больных артериальной гипертонией без нарушений углеводного обмена. Выявленные негативные изменения большинства изученных показателей у лиц с артериальной гипертонией и предиабетом сопоставимы с таковыми у больных артериальной гипертонией с сахарным диабетом 2 типа.
- 2. Применение у пациентов с артериальной гипертонией и предиабетом различных вариантов комбинированной фармакотерапии, включавших периндоприл, индапамид с метформином/моксонидином/амлодипином и периндоприл с моксонидином и метформином, обеспечивало статистически значимые позитивные изменения большинства показателей суточного профиля артериального давления, артериальной ригидности и центрального аортального давления, а также структурно-функционального состояния миокарда левого желудочка и индексов резистентности почечных артерий.
- 3. Комбинированная терапия, включавшая периндоприл, моксонидин и метформин, способствовала статистически более выраженному улучшению основных показателей суточного профиля артериального давления, артериальной ригидности и центрального аортального давления, чем комбинация периндоприла, индапамида с моксонидином или метформином, и обеспечивала сопоставимые антигипертензивный и вазопротективный эффекты в сравнении с назначением периндоприла, индапамида и амлодипина. Комбинации периндоприла, индапамида с моксонидином или метформином приводили к сопоставимым позитивным изменениям основных показателей суточного мониторирования артериального давления, артериальной ригидности и центрального аортального давления.
- 4. Назначение c артериальной предиабетом пациентам гипертонией И комбинированной терапии, включавшей периндоприл, индапамид амлодипин обеспечивало статистически более значимое улучшение показателей структурнофункционального состояния миокарда левого желудочка, чем комбинация периндоприла, индапамида с метформином/моксонидином. Комбинация периндоприла, моксонидина и метформина способствовала сопоставимому улучшению показателей ремоделирования миокарда левого желудочка в сравнении с использованием периндоприла, индапамида в сочетании с моксонидином или метформином.
- 5. Использование комбинации периндоприла, моксонидина и метформина у больных артериальной гипертонией и предиабетом сопровождалось статистически более выраженными позитивными изменениями основных показателей углеводного обмена, чем применение сочетания периндоприла, индапамида и амлодипина. Использование комбинированной фармакотерапии, включавшей периндоприл, индапамид и амлодипин

уступало комбинациям, включавшим метформин или моксонидин в отношении улучшения показателей углеводного обмена.

6. Включение метформина В комбинированной моксонидина И состав атигипертензивной терапии у пациентов с артериальной гипертонией и предиабетом способствовать антигипертензивной, может повышению кардио-, вазо-, нефропротективной эффективности также показателей лечения, оптимизации углеводного обмена.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Пациентам с артериальной гипертонией и нарушениями углеводного обмена необходимо определять характер и степень поражения органов-мишеней и назначать комбнированную терапию уже на стадии предиабета, в связи с выявлением патологических изменений показателей суточного профиля артериального давления, артериальной жесткости, центрального аортального давления, структурнофункционального состояния миокарда левого желудочка, толщины комплекса интимамедиа общих сонных артерий и индексов резистентности почечных артерий, сопоставимых с таковыми у больных артериальной гипертонией и сахарным диабетом 2 типа.
- 2. Пациентам с артериальной гипертонией и предиабетом рекомендуется использовать ингибитор ангиотензинпревращающего фермента периндоприл в дозе 5-10 мг/сутки в сочетании с агонистом имидазолиновых рецепторов моксонидином 0,2-0,6 мг/сутки и бигуанидом метформином 1000 мг/сутки, поскольку данная комбинация обеспечивает сопоставимые с традиционной трехкомпонентной терапией, включающей ингибитор ангиотензинпревращающего фермента, тиазидоподобный диуретик и дигидропиридиновый антагонист кальция, антигипертензивный и вазопротективный эффекты, а также обладает статистически значимо более выраженным позитивным влиянием на прогностически важные показатели углеводного обмена.
- 3. Комбинированная терапия, включающая ингибитор ангиотензинпревращающего фермента периндоприл (5-10 мг/сутки) в сочетании с тиазидоподобным диуретиком индапамидом (1,5 мг/сутки) и агонистом имидазолиновых рецепторов моксонидином (0,2-0,6 мг/сутки) или бигуанидом метформином (1000 мг/сутки) также может быть использована у больных артериальной гипертонией и предиабетом для достижения антигипертензивного, вазо-, кардио- и нефропротективного эффектов, улучшения показателей углеводного обмена и уменьшения инсулинорезистентности, поскольку не уступает по эффективности традиционной фармакотерапии, но обладает более значимыми позитивными метаболическими эффектами.

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

- 1. Учитывая полученные результаты, целесообразно проведение дальнейших проспективных исследований с целью оценки антигипертензивного, кардио-, вазо-и нефропротективного эффектов и состояния углеводного обмена на фоне более длительного применения периндоприла и других блокаторов РААС в комбинации с моксонидином и метформином у больных АГ и предиабетом.
- 2. Актуальным является изучение гендерных особенностей основных параметров СМАД, артериальной ригидности, ЦАД, СФСМЛЖ у пациентов с АГ и предиабетом, а

также влияния комбинированной терапии, включающей метформин и моксонидин на эти показатели у мужчин и женщин с АГ и предиабетом.

- 3. Важным представляется исследование влияния длительной комбинированной терапии, включающей иАПФ или БРА, моксонидин и метформин на риск развития кардиоваскулярных событий, а также новых случаев СД 2 типа у лиц с АГ и предиабетом.
- 4. Учитывая выявление значимых патологических изменений СПАД, показателей ригидности артериальной стенки, ЦАД, СФСМЛЖ, ТКИМ ОСА и ІК ПА у лиц с АГ и предиабетом, сопоставимых с изменениями данных показателей у пациентов с АГ и СД 2 типа, представляется целесообразным дальнейшее изучение эффективности различных вариантов комбинированной фармакотерапии для разработки алгоритмов индивидуализированного лечения больных АГ и предиабетом.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Гутова, С. Р. Особенности структурно-функционального состояния миокарда левого желудочка у больных артериальной гипертонией в сочетании с предиабетом / С. Р. Гутова, В. В. Скибицкий, А. В. Фендрикова // Материалы 14 съезда кардиологов и кардиохирургов южн. федерал. округа. Сочи, 2015. С. 68 69.
- 2. Скибицкий, В. В. Особенности суточного профиля артериального давления и показателей сосудистой жесткости у женщин с артериальной гипертонией, сочетанной с предиабетом / В. В. Скибицкий, С. Р. Гутова, А. В. Фендрикова // Материалы 10 Всерос. конф. «Проблемы женского здоровья и пути их решения». М., 2016. С. 49 50.
- 3. Гутова, С. Р. Особенности ремоделирования миокарда левого желудочка у больных артериальной гипертонией в сочетании с предиабетом / С. Р. Гутова, В. В. Скибицкий, А. В. Фендрикова // 12 Всерос. конгр. «Артериальная гипертония 2016: итоги и перспективы». М., 2016. С. 43 44.
- 4. Гутова, С. Р. Особенности показателей сосудистой жесткости, центрального аортального давления и суточного профиля артериального давления у пациентов с артериальной гипертонией, сочетанной с предиабетом // Материалы 14 науч. практ. конф. молодых ученых и студентов Юга России «Медицинская наука и здравоохранение». Краснодар, 2016. С. 55 57.
- 5. Скибицкий, В. В. Особенности структурно-функционального состояния миокарда левого желудочка у больных артериальной гипертонией в сочетании с предиабетом и сахарным диабетом 2 типа / В. В. Скибицкий, С. Р. Гутова, А. В. Фендрикова // Материалы 15 съезда кардиологов Юга России «Аспекты этиологии, патогенеза, диагностики и лечения сердечно-сосудистых заболеваний». Ростов н / Д, 2016. С. 107.
- 6. Скибицкий, В. В. Особенности суточного профиля артериального давления и показателей сосудистой жесткости у пациентов с артериальной гипертонией, сочетанной с предиабетом / В. В. Скибицкий, С. Р. Гутова, А. В. Фендрикова // «Хроническая сердечная недостаточность: современный взгляд на проблему»: материалы 5 конф. Юга России Общерос. общества организации «Общество специалистов по сердечной недостаточности». Ростов н / Д, 2016. С. 92 93.
- 7. Скибицкий, В. В. Особенности суточного профиля артериального давления и показателей центрального аортального давления у пациентов с артериальной гипертонией, сочетанной с предиабетом / В. В. Скибицкий, С. Р. Гутова, А. В. Фендрикова // Материалы конгр. «Кардиология 2016: вызовы и пути решения». Екатеринбург, 2016. С. 187.
- 8. Гутова, С. Р. Особенности ремоделирования миокарда левого желудочка у больных артериальной гипертонией в сочетании с различными нарушениями углеводного обмена / С. Р. Гутова, В. В. Скибицкий, А. В. Фендрикова // Тезисы 4 Евразийск. конгресса кардиологов. М., 2016. С. 117 118.
- 9. Гутова, С. Р. Особенности показателей суточного мониторирования артериального давления, центрального аортального давления и сосудистой жесткости у пациентов артериальной

- гипертонией и предиабетом / С. Р. Гутова, В. В. Скибицкий, А. В. Фендрикова // Коморбидность как проблема современной медицины: сб. материалов межрегион. конф. терапевтов Юга России. Ростов н/Д, 2016. С. 47 49.
- 10. Гутова, С. Р. Особенности показателей суточного профиля артериального давления, сосудистой жесткости и центрального аортального давления у пациентов с артериальной гипертонией в сочетании с предиабетом и сахарным диабетом 2 типа / С. Р. Гутова, В. В. Скибицкий, А. В. Фендрикова // 13 Всерос. конгр. «Артериальная гипертония»: тез. Уфа, 2017. С. 9 10.
- 11. Скибицкий, В. В. Эффективность влияния метформина и моксонидина в составе комбинированной антигипертензивной терапии на ремоделирование миокарда левого желудочка у пациентов предиабетом и артериальной гипертонией / В. В. Скибицкий, С. Р. Гутова, А. В. Фендрикова // Кардиоваскулярная терапия и профилактика. М., 2017. № 16. С. 24.
- 12. Скибицкий, В. В. Сравнительная эффективность влияния моксонидина или амлодипина в составе комбинированной антигипертензивной терапии на ремоделирование миокарда левого желудочка у пациентов с предиабетом и артериальной гипертонией / В. В. Скибицкий, С. Р. Гутова, А. В. Фендрикова [и др.] // Материалы конгресса «Кардиология 2017: профессиональное образование, наука и инновации». СПб, 2017. С. 328.
- 13. Гутова, С. Р. Динамика показателей структурно-функционального состояния миокарда левого желудочка при различных вариантах комбинированной терапии у больных артериальной гипертонией и предиабетом / С. Р. Гутова, В. В. Скибицкий, А. В. Фендрикова // 5 съезд терапевтов Южного федерального округа. Ростов н / Д, 2017. С. 67.
- 14. Гутова, С. Р. Особенности суточного профиля артериального давления у больных артериальной гипертонией с нарушениями углеводного обмена / С. Р. Гутова, А. В. Фендрикова, М. В. Скибицкая // Сеченовский вестник. 2018. №1 (31). С. 34-39.
- 15. Скибицкий, В. В. Сравнительная оценка влияния метформина и моксонидина в составе комбинированной фармакотерапии на показатели суточного профиля артериального давления у больных артериальной гипертонией, сочетанной с предиабетом / В. В. Скибицкий, С. Р. Гутова, А. В. Фендрикова // 7 международный форум кардиологов и терапевтов: сб. науч. тр. М., 2018. С. 272.
- 16. Скибицкий, В. В. Особенности суточного профиля артериального давления, сосудистой жесткости и центрального аортального давления у больных артериальной гипертонией с ранними нарушениями углеводного обмена / В. В. Скибицкий, С. Р. Гутова, А. В. Фендрикова // **Кубанский научный медицинский вестник**. 2018. № 25 (2). С. 127 134.
- 17. Скибицкий, В. В. Сравнительная оценка влияния метформина и амлодипина в составе комбинированной фармакотерапии на показатели суточного мониторирования артериального давления у больных артериальной гипертонией, сочетанной с предиабетом / В. В. Скибицкий, С. Р. Гутова, А. В. Фендрикова // Материалы съезда кардиологов южн. федерал. округа. Краснодар, 2018. С. 9-11.
- 18. Гутова, С. Р. Сравнительная оценка влияния метформина и амлодипина в составе комбинированной фармакотерапии на показатели жесткости сосудистой стенки и центрального аортального давления у больных артериальной гипертонией, сочетанной с предиабетом / С. Р. Гутова, В. В. Скибицкий, А. В. Фендрикова // Материалы съезда кардиологов южн. федерал. округа. Краснодар, 2018. С. 123-125.
- 19. Фендрикова, А. В. Особенности суточного профиля артериального давления, показателей артериальной жесткости и структурно-функционального состояния миокарда левого желудочка у больных артериальной гипертонией с нарушениями углеводного обмена / А. В. Фендрикова, С. Р. Гутова, В. В. Скибицкий, А. В. Скибицкий // Системные гипертензии. − 2018. − № 15 (3). С. 44 49.
- 20. Скибицкий, В. В. Сравнительная оценка влияния метформина и моксонидина в составе комбинированной фармакотерапии на показатели жесткости сосудистой стенки и центрального аортального давления у больных артериальной гипертонией, сочетанной с предиабетом / В. В.

Скибицкий, С. Р. Гутова, А. В. Фендрикова // Российский национальный конгресс кардиологов. - М., 2018. - С. 479.

- 21. Гутова, С. Р. Сравнительная оценка влияния моксонидина и амлодипина в составе комбинированной фармакотерапии на показатели жесткости сосудистой стенки и центрального аортального давления у больных артериальной гипертонией, сочетанной с предиабетом / С. Р. Гутова, А. В. Фендрикова, В. В. Скибицкий // Сборник материалов межрегиональной конференции терапевтов ЮФО «Инновационные технологии в терапии: от клинических исследований к практике». Ростов н/Д., 2018. С. 47-48.
- 22. Гутова, С. Р. Сравнительная оценка влияния моксонидина и амлодипина в составе комбинированной фармакотерапии на показатели суточного мониторирования артериального давления у больных артериальной гипертонией, сочетанной с предиабетом / С. Р. Гутова, А. В. Фендрикова, В. В. Скибицкий // 8 Международный форум кардиологов и терапевтов. М., 2019. С. 60.
- 23. Гутова, С. Р. Влияние разных вариантов комбинированной фармакотерапии на показатели суточного мониторирования артериального давления у больных артериальной гипертонией, сочетанной с предиабетом / С. Р. Гутова, В. В. Скибицкий, А. В. Фендрикова // 15 Всероссийский конгресс «Артериальная гипертония 2019: профилактика и лечение». М., 2019. С. 10-11.
- 24. Гутова, С. Р. Влияние разных вариантов комбинированной фармакотерапии на жесткость сосудистой стенки и центральное аортальное давление у больных артериальной гипертонией, сочетанной с предиабетом / С. Р. Гутова, В. В. Скибицкий, А. В. Фендрикова // Российский национальный конгресс кардиологов. Екатеринбург, 2019. С. 152.
- 25. Гутова, С. Р. Динамика показателей суточного мониторирования артериального давления у пациентов с артериальной гипертонией и предиабетом на фоне применения разных вариантов комбинированной фармакотерапии / С. Р. Гутова, В. В. Скибицкий, А. В. Фендрикова // 16 Всероссийский конгресс «Артериальная гипертония 2020: наука на службе практического здравоохранения». Ярославль, 2020. С. 35-36.
- 26. Гутова, С. Р. Вазопротективные эффекты комбинированной фармакотерапии у больных артериальной гипертонией в сочетании с предиабетом / С. Р. Гутова, В. В. Скибицкий, А. В. Фендрикова // Сборник научных трудов 9 Международного форума кардиологов и терапевтов. М., 2020. С. 84-85.
- 27. Скибицкий, В. В. Антигипертензивные и вазопротективные эффекты комбинированной фармакотерапии у пациентов с артериальной гипертензией и предиабетом / В. В. Скибицкий, С. Р. Гутова, А. В. Фендрикова, А. В. Скибицкий // **Кардиология**. − 2020. − № 60 (4). − С. 10-17.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

АΓ - артериальная гипертонияАД - артериальное давление

АИР - агонист(ы) имидазолиновых рецепторов

АК - антагонист(ы) кальция

иАПФ - ингибитор(ы) ангиотензинпревращающего фермента

НГН - нарушенная гликемия натощак

НТГ - нарушенная толерантность к глюкозе НУО - нарушения углеводного обмена

ОСА - общая сонная артерия

IR ПА - индекс резистентности почечной артерии

СД - сахарный диабет

СМАД - суточное мониторирование артериального давления

СПАД - суточный профиль артериального давления

- структурно-функциональное состояние миокарда левого желудочка

ТД - тиазидоподобный диуретик

ТКИМ - толщина комплекса интима-медиа ЦАД - центральное аортальное давление

ЦУ АД - целевой уровень артериального давления

Подписано в печать с готовых диапозитивов 05.10.2021 г. Заказ № 94453 Тираж 100 экз. Объем 1 п.л. Формат 60х90/16 Бумага офсетная. Печать офсетная Отпечатано: ООО «Впечать» г. Москва, 2й Колобовский пер., д. 9/2 стр.1 Телефон 651-61-59 www.vp24.ru